Course curriculum
-
1
E- Learning Content
-
Introduction Video
-
-
2
Chapter 1. Introduction Python - Pre - Learning Session
-
1.1-Python Crash course Introduction
-
1.2 Python Demo n install
-
1.3 Python Intro and Installation
-
1.4 Basic python and datatype
-
1.5 Basic,Number,string
-
1.6 Data types
-
-
3
Chapter 2. Control flow
-
2.1 If else conditions
-
2.2 While & for loop conditions
-
-
4
Chapter 3. Exception Handling
-
3.1 Exception Handling
-
-
5
Chapter 4. Functions
-
4.1 Functions
-
-
6
Chapter 5. OOPS
-
5.1 CLASSES
-
5.2 OOP
-
-
7
Chapter 6.Deep Learning
-
6.1 Logistic Regression vs DL
-
6.2 TesorFlow and Keras
-
-
8
Chapter 7. Libraries
-
7.1 Introduction to Libraries
-
7.2 Library Introduction
-
7.3 Matplolib
-
7.4 Numpy
-
7.5 Pandas
-
-
9
Chapter 7. Libraries
-
8.1 Data
-
8.2 Linear Algebra
-
8.3 Statistics
-
8.4 Stats - Probs
-
-
10
Chapter 9. Intro to Probability & DV
-
9.1 Introduction to Probability, Statistics & SQL
-
9.2 Data Visualization with Tableau
-
9.3 LSTM
-
-
11
Chapter 10. Machine Learning Models
-
10.1 Clustering
-
10.2 Evaluation Metrics
-
10.3 Logistic Regression
-
10.4 Simple Linear regression
-
10.5 Multiple Linear regression
-
-
12
Live Session
-
First Live Session- Jun 28, 2022 08:00 PM
-
2nd Live Session- Jun 29, 2022 08:00 PM
-
3rd Live Session-Jun 30, 2022 08:00 PM
-
4th Live Session-Jul 1, 2022 08:00 PM
-
5th Live Session- Jul 4, 2022 08:00 PM
-
-
13
LIVE SESSIONS RECORDINGS
-
SESSION-1
-
SESSION-2
-
SESSION-3
-
SESSION-4
-
SESSION-5
-
-
14
Major Project
-
Major Project
-