Course curriculum
-
1
E- Learning Content
-
1.1-Python Crash course Introduction
-
1.2 Python Demo n install
-
1.3 Python Intro and Installation
-
1.4 Basic python and datatype
-
1.5 Basic,Number,string
-
1.6 Data types
-
-
2
Chapter 2 - Control flow
-
2.1 If else conditions
-
2.2 While & for loop conditions
-
-
3
Chapter 3 - Exception Handling
-
3.1 Exception Handling
-
-
4
Chapter 4 -Functions
-
4.1 Functions
-
-
5
Chapter 5 - OOPS
-
5.1 CLASSES
-
5.2 OOP
-
-
6
Chapter -6 Deep Learning
-
6.1 Logistic Regression vs DL
-
6.2 TesorFlow and Keras
-
-
7
Chapter -7 Libraries
-
7.1 Introduction to Libraries
-
7.2 Library Introduction
-
7.3 Matplolib
-
7.4 Numpy
-
7.5 Pandas
-
-
8
Chapter 8 - Mathematics
-
8.1 Data
-
8.2 Linear Algebra
-
8.2 Linear Algebra
-
8.3 Statistics
-
8.4 Stats - Probs
-
-
9
Chapter 9 - Machine Learning Models
-
9.1 Clustering PPT
-
9.2 Clustering
-
9.3 Evaluation Metrics
-
9.4 Logistic Regression - Feature Regression
-
9.5 Logistic Regression
-
9.6 Simple Linear regression
-
9.7 Multiple Linear regression
-
-
10
Live Sessions meeting Links
-
Session- 1
-
Session- 2
-
Session-3
-
Session-4
-
Session-5
-
-
11
Live Sessions Recordings
-
Session-1
-
Session-2
-
Session- 3
-
Session-4
-
Session- 5
-
-
12
Self Driving Car - Internship Project
-
Self Driving Car - 1
-
Self Driving Car - 2
-
Self Driving Car - Internship Project- Live Sessions Recordings
-