Course curriculum

  • 1

    Student Guide Book

    • Student Guide Book

    • Schedule/curriculum Time Table

    • Introduction to jupyter,OS, conda and programming

    • Introduction to course, AI, Deep Learning

    • Tensor

    • Lesson 8- AI

    • Feedback Form

  • 2

    LIVE SESSION

    • AI_ 1st Live Session_ 06th FEB 2021_ 5:00 PM

    • AI_2nd Live Session_07th FEB 2021_5:00 PM

    • AI_3rd Live Session_ Feb 13, 2021 05:00 PM

    • AI_ 4th Live Session_ Feb 14, 2021, 05:00 PM

    • AI_ 5th Live Session_ Feb 20, 2021 05:00 PM

    • AI_ 6th Live Session_ Feb 21, 2021 05:00 PM

    • AI_ 7th Live Session_ Feb 27, 2021 05:00 PM

    • AI_ 8th Live Session_ Feb 28, 2021 05:00 PM

    • AI_9th Live Session_ Mar 6, 2021 05:00 PM

    • AI_10th Live Session_ Mar 7, 2021 05:00 PM

    • AI_11th Live Session_ Mar 11, 2021 08:00 PM

    • AI_12th Live Session_ Mar 12, 2021 08:00 PM

    • AI_13th Live Session_ Mar 20, 2021 05:00 PM

    • AI_14th Live Session_ Mar 21, 2021 05:00 PM

    • AI_15th Live Session_ Mar 27, 2021 05:00 PM

    • AI_16th Live Session_ Mar 28, 2021 05:00 PM

    • AI_17th Live Session_ Apr 3, 2021 05:00 PM

    • AI_18th Live Session_ Apr 4, 2021 05:00 PM

  • 3

    Recorded Session

    • AI_ 1st session _06-02-2021

    • AI_2nd Session_07-02-2021

    • AI_3rd Session_13-02-2021

    • AI_4th Session_14-02-2021

    • AI _5th Session_20-02-2021

    • AI_6th Session_21-02-2021

    • AI_7th Session_27-02-2021

    • AI_8th Session_28-02-2021

    • AI_9th session_06-03-2021

    • AI_10th Session_07-03-2021

    • AI_11th Session_11-03-2021

    • AI_12th Session_12-03-2021

    • AI_13th Session_20-03-2021

    • AI_14th Session_21-03-2021

    • AI_15th Session_27-03-2021

    • AI_16th Session_28-03-2021

    • AI_17th Session_03-04-2021

    • AI_18th Session_04-04-2021

  • 4

    Project

    • Assignment

    • Assignment Submission

    • Major Project

    • Project Submission Link

  • 5

    MTA -Module 1: Installing and Starting Python

    • 1.1: Overview

    • 1.2: Installing Python

    • 1.3: Interactive Python

    • 1.4: Significant Whitespace

    • 1.5: Python Culture

    • 1.6: The Python Standard Library

    • 1.7: Summary

    • Installing and Starting Python Slides

  • 6

    Module 2: Scalar Types, Operators and Control Flows

    • 2.1: Overview

    • 2.2: Relational Operators

    • 2.3: Control Flow

    • 2.4: While Loops

    • 2.5: Summary

    • Scalar Type Operators and Control Flow Slides

  • 7

    Module 3: Introducing Strings, Collections and Iterations

    • 3.1: Overview

    • 3.2: String

    • 3.3: String Literals

    • 3.4: Bytes

    • 3.5: List

    • 3.6: Dictionary

    • 3.7: For Loop

    • 3.8: Putting It All Together

    • 3.9: Summary

    • Introducing Strings, Collections and Iterations Slide

  • 8

    Module 4: Modularity

    • 4.1: Overview

    • 4.2: Modules

    • 4.3: Functions

    • 4.4: Name

    • 4.5: The Execution Model

    • 4.6: Command Line Arguments

    • 4.7: Docstrings

    • 4.8: Comments

    • 4.9: Shebang

    • 4.10: Summary

    • Modularity Slides

  • 9

    Module 5: Objects and Types

    • 5.1: Overview

    • 5.3: Function Arguments

    • 5.4: Python's Type System

    • 5.5: Scopes

    • 5.6: Everything is an Object

    • 5.7: Summary

    • Objects and Types

  • 10

    Module 6: Built-in Collections

    • 6.1: Overview

    • 6.2: Tuples

    • 6.3: Strings

    • 6.4: Ranges

    • 6.5: Lists

    • 6.6: Dictionaries

    • 6.7: Sets

    • 6.8: Protocols

    • 6.9: Summary

    • Built-in Collections Slides

    • Codes for Built-in Collections

  • 11

    Module 7: Exceptions

    • 7.1: Overview

    • 7.2: Exceptions and Control Flow

    • 7.3: Handling Exceptions

    • 7.4: Exceptions and Programmer Errors

    • 7.5: Re-raising Exceptions

    • 7.6: Exceptions and Part of the API

    • 7.7: Exceptions and Protocols

    • 7.8: Avoid Explicit Type Checks

    • 7.9: It's Easier to Ask Forgiveness Than Permission

    • 7.10: Cleanup Actions

    • 7.11: Platform Specific Code

    • 7.12: Summary

    • Exceptions Slide

  • 12

    Module 8: Iterations and Iterables

    • 8.1 Overview

    • 8.2: List and Set Comprehensions

    • 8.3: Dictionary Comprehensions

    • 8.4: Filtering Comprehensions

    • 8.5: Iteration Protocols

    • 8.6: Generator Functions

    • 8.7: Maintaining State in Generators

    • 8.8: Laziness and the Infinite

    • 8.9: Generator Expressions

    • 8.10: Iteration Tools

    • 8.11: Summary

    • Iteration and Iterables Slides

  • 13

    Module 9: Classes

    • 9.1: Overview

    • 9.2: Classes

    • 9.3: Defining Classes

    • 9.4: Instance Methods

    • 9.5: Instance Initializers

    • 9.6: A Second Class

    • 9.7: Collaborating Classes

    • 9.8: Booking Seats

    • 9.9: Methods for Implementation Details

    • 9.10: Object Oriented Design with Function Objects

    • 9.11: Polymorphism and Duck Typing

    • 9.12: Inheritance and Implementation Sharing

    • 9.13: Summary

    • Classes Slides

  • 14

    Module 10: File IO and Resource Managements

    • 10.1: Overview

    • 10.2: Opening Files

    • 10.3: Writing Text

    • 10.4: Reading Text

    • 10.5: Appending Text

    • 10.6: Iterating Over Files

    • 10.7: Closing Files with Finally

    • 10.8: With Blocks

    • 10.9: Binary Files

    • 10.10: Bitwise Operators

    • 10.11: Pixel Data

    • 10.12: Reading Binary Data

    • 10.13: File-like Objects

    • 10.14: Context Manager

    • 10.15: Summary

  • 15

    Internship Project 1_NEWS CLASSIFICATIONS

    • Part - 1

    • Part-2

    • Part - 3

    • News-classification

    • NEWS CLASSIFICATION WITH NLP

    • Data Set_ True and Fake

  • 16

    Internship Project-2_ RECOGNITION OF OBJECTS

    • Part - 1

    • Part - 2

    • Part - 3

    • RECOGNITION OF OBJECTS

    • OBJECT RECOGNITION

  • 17

    Internship Project Submission Link

    • Internship Project Submission