Course curriculum
-
1
E- Learning Content
-
Chapter 1 - Introduction to Artificial Intelligence
-
Introduction and Basic Setup
-
Python basics 1
-
Python basics -2
-
Python basics -3
-
Python basics -4
-
Python -basic-5
-
Introductions to AI
-
DEEP LEARNING-1
-
-
2
Chapter-2
-
2.1 Introduction to Python
-
2.2 Introduction to Python Programming
-
2.3 Basis of Python Programming
-
2.4 Python Programming - 1
-
2.4 Python Programming - 1
-
2.5 Python Programming - 2
-
-
3
Chapter-3
-
3.1 Introduction to Matplotlib
-
3.2 Matplotlib Plots
-
3.3 Matplotlib Styles - 1
-
3.4 Matplotlib Styles - 2
-
3.5 Matplotlib Plots Variants
-
-
4
Chapter-4
-
4.1 Introduction to Numpy
-
4.2 Numpy Types
-
4.3 Numpy Arrays
-
4.4 Numpy Array Attributes
-
4.5 Numpy Math
-
4.6 Numpy Operations
-
-
5
Chapter-5
-
5.1 Introduction to Pandas
-
5.2 Pandas Reading Data
-
5.3 Pandas Dataman - 1
-
5.4 Pandas Dataman - 2
-
5.5 Pandas Dataman - 3
-
-
6
Chapter-6
-
6.1 Introduction to Machine Learning_UnSupervised Learning
-
-
7
Chapter-7
-
7 Introduction to Tensorflow
-
7.1 Introduction to Keras
-
7.2 Clustering
-
7.3 Introduction to Deep Learning
-
7.4 Natural Language Processing
-
7.5 Reinforcement Machine Learning
-
-
8
Registration Instruction For IBM
-
Registration Instruction For IBM
-
Steps to register- IBM Education
-
-
9
First Live Session
-
First Live Session-Aug 4, 2022 08:00 PM
-
2nd Live Session- Aug 5, 2022 08:00 PM
-
3rd Live Session- Aug 6, 2022 08:00 PM
-
4th Live Session- Aug 8, 2022 08:00 PM
-
5th Live Session- Aug 9, 2022 08:00 PM
-
Internship orientation
-
Internship Project -Fashion MNIST Data Classification
-
-
10
Live Sessions Recordings
-
SESSION- 1
-
SESSION-2
-
SESSION-3
-
SESSION-4
-
SESSION-5
-
Internship Orientation Meeting Recordings
-
Fashion MNIST LIVE SESSION RECORDINGS
-
-
11
Internship Project -Fashion MNIST Data Classification
-
Fashion MNIST Data Classification
-
Deep learning project
-
-
12
Internship project submission
-
INTERNSHIP PROJECT SUBMISSIOM DETAILS
-