Course curriculum
-
1
Let's get started here..!
-
Curriculum:- Artificial Intelligence
-
-
2
Module 1
-
Assignment 1: Python Basics
-
Artificial Intelligence Live Class 1
-
-
3
Module 2
-
Data Structure in Python
-
Control Flow and Loops in Python
-
Assignment 2: Practice and FAQ's
-
Artificial Intelligence Live Session 2
-
-
4
Module 3
-
Artificial Intelligence Live Session 3
-
-
5
Module 4
-
Artificial Intelligence Live Session 4
-
-
6
Module 5
-
Artificial Intelligence Live Session 5
-
Practice Statistics Question
-
-
7
Module 6
-
Artificial Intelligence Live Session 6
-
-
8
Module 7
-
Artificial Intelligence Live Session 7
-
-
9
Module 8
-
Artificial Intelligence Live Session 8
-
-
10
Module 9
-
Artificial Intelligence Live Session 9
-
-
11
Important Reading Material
-
Statistics
-
NUMPY
-
PANDAS
-
-
12
Module 10
-
Artificial Intelligence Live Session 10
-
-
13
Module 11
-
Artificial Intelligence Live Session 11
-
EDA Dataset
-
-
14
Module 12
-
Artificial Intelligence Live Session 12
-
-
15
Reference Material
-
DataPerts - MATPLOTLIB
-
DataPerts - SEABORN
-
DataPerts - EDA
-
Session 1 - Types of Data, Measures of Central & Dispersion_stats
-
Session 2 - Skewness, Kurtosis, Descriptive Stats
-
-
16
Module 13
-
Artificial Intelligence Live Session 13
-
-
17
Module 14
-
Artificial Intelligence Live Session 14
-
-
18
Module 15
-
Artificial Intelligence Live Session 15
-
-
19
Module 16
-
Artificial Intelligence Live Session 16
-
-
20
Module 17
-
Artificial Intelligence Live Session 17
-
-
21
Module 18
-
Artificial Intelligence Live Session 18
-
-
22
Module 19
-
Artificial Intelligence Live Session 19
-
-
23
Module 20
-
Artificial Intelligence Live Session 20
-
-
24
Module 21
-
Artificial Intelligence Live Session 21
-
-
25
Module 22
-
Artificial Intelligence Live Session 22
-
-
26
Module 23
-
Artificial Intelligence Live Session 23
-
-
27
Module 24
-
Artificial Intelligence Live Session 24
-
-
28
Module 25
-
Artificial Intelligence Live Session 25
-
-
29
Module 26
-
Artificial Intelligence Live Session 26
-
-
30
Module 27
-
Artificial Intelligence Live Session 27
-
-
31
Module 28
-
Artificial Intelligence Live Session 28
-
-
32
Module 29
-
Artificial Intelligence Live Session 29
-
-
33
Module 30
-
Artificial Intelligence Live Session 30
-
-
34
VERY IMPORTANT Instructions for Project Submission
-
Submission Deadline and Instructions
-
IMPORTANT NOTICE
-
-
35
Project Statement
-
Sonar.csv
-
Keras
-
tensorflow_v_2.0
-
Tensorflow
-
ANN.ipynb
-
Sonar.ipynb
-
TensorflowBasics.ipynb
-
Tensorflow_Basics
-
Variables and placeholders
-
-
36
AI_MinProj- SPC'20
-
PROJECT TITLE - TITANIC_EDA_DATASET
-
Titanic Dataset
-
Fruits
-
SLR_AdSpendVsSales
-
Multiple LR_Advertising_2_CategoricalVariables
-
Problem Statement
-
InMovidu+DataPerts - SLR - AdSpendVsSales
-
Multiple LR_Advertising_Categorical
-
Logistic Regression
-
Subscription
-
KNN Classification_1 - IRIS
-
KNN Classification - Fruits
-
-
37
Important Material
-
01 - Decision Tree Basics.html
-
03- Decision Tree - Diabetes (1).html
-
01 - Random Forest - Introduction.html
-
02 - Random Forest Classification - Social Network Ads.html
-
01 - Clustering - Introduction.html
-
KMeans_Case Study1_CreditCard.html
-
KMeans_Case Study2_Seeds.html
-
Hierarchical_Case Study1_CreditCard.html
-
Hierarchical_Case Study2_seeds.html
-
Diabetes.csv
-
Social Network Ads
-
creditcard.csv
-
seeds.csv
-
-
38
Face Mask Project
-
Face Mask Project
-
-
39
PPT Link
-
Class PPT Link
-